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Electromagnetic Fields and Waves (1)

Electrical properties of a medium are specified by its constitutive parameters:
e permeability, y = U, (for free space, /= 4, = 4 11X 107 H/m)
e permittivity, &= &,&, (for free space, £ =&, = 8.85 10712 F/m)
» conductivity, o (for a metal, o~ 107 S/m)

Electric and magnetic field intensities are E(x,y,z,¢) V/m and H(x,y,z,t) A/m
« they are vector functions space and time, e.g., in cartesian coordinates

E(x,y, z,t) = xE, (x,y,z,t) +)3Ey(x,y, z,t)+zE, (x,y,2,t)

e similar expressions for other coordinates systems
e fields arise from currents J and charges p, on the source (J is the volume

current density in A/ m? and P, 1s volume charge density in C/ m’ )

Electromagnetic fields are completely described by Maxwell’s equations:

(1) Cx E=—,u%{ 3)MHA=0

—>

(2) [X Ef:j+5% (4HME=p,/&
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Electromagnetic Fields and Waves (2)

Most sources of electromagnetic fields have a sinusoidal variation in time (time-harmonic
sources). All of the field quantities associated with the sources will have the same
sinusoidal time variation. Therefore, we suppress the time dependence for convenience,
and work with a time independent quantity called a phasor. The two are related by

E(z,t) =Re}E(z)e’ |

e E(z) is the phasor representation; E(z,?) is the instantaneous quantity
. Re{}] 1s the real operator (i.e., “take the real part of”)

'j:\/TI

Since the time dependence varies as e’ ™, the time derivatives in Maxwell’s equations
can be replaced by J/ ¢t = ja in the time-harmonic case:

()X E=—jauH (G)MH=0
Q) x H=J+jwd& (4HME=p,/&

jat

Any fields or waves that exist in a particular region of space must satisfy Maxwell’s
equations and the appropriate boundary conditions.
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Derivation of the Wave Equation (1)

The wave equation in a source free region of space (J =0, 0, =0) is derived by taking
the curl of Maxwell’s first equation:

Dx(DxE):Dx(—'u@j:—'u

o (-.s__. 0 E\__ J°E
Y [Oxi)= ( j— HE

Jdt adt\ ot Jt2
where it is assumed that the medium is time invariant (4 and £ not time dependent). Now
use the vector i1dentity

H/_J
:pv =0
to obtain
2 & 2 &
~0%E = —,ugd—z =N DZE—,ugd—fzo
ot ot

In the frequency domain, using phasors, and noting that 0/ Jt = ja yields

0°E+w’u.e.E=0°E+k*E=0%E-y*E =0
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Derivation of the Wave Equation (2)

The subscript “c” denotes the possibility of a complex quantity: £, = &' — j€" and
U, =M — ju". The imaginary terms are nonzero if the medium is lossy. Also, we have
defined

yEa+ jB=jk. = jw e,

where @ = attenuation constant (Np/m) and 8 =271/ A = phase constant (rad/m). In free
space, which is a lossless medium, the subscripts “o” are often used

E.=ELU. =, = a=0,B=w/EU,

Frequently £ is used in place of £ when the medium is lossless and unbounded. There is a
similar wave equation that can be derived for the magnetic field intensity

0?H -y*H =0
The simplest solutions to the wave equations are plane waves. An example of a plane
wave propagating in the z direction is:

E(z)=%E e "
In general, £, 1s a complex constant that depends on the strength of the source and its
distance from the observer at z.
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Derivation of the Wave Equation (3)

The instantaneous value of the electric field is
E(z0) = Re{E(2)e™ | = $E,e™ cos(at — &)

Time snapshots of the field are shown below

e wave propagates in the +z direction

Ecp | p | » A= wavelength
I g -
Eot DIRECTION OF cw= 277f (rad/ sec)
PROPAGATION "
— — P _
o e o = I frequency (Hz)

phase velocity 1s u, =— =

" P B Jue
free space u, =c=2.998 x 10° m/s)
x polarized (direction of the electric

—E,| field vector is x)
o maximum amplitude of the wave is £,
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Derivation of the Wave Equation (4)

The magnetic field vector is obtained from Maxwell’s first equation 0% E = — jeguH

= 0XE Ox(#E,e ) _ j o g ity =5 P | it

: : V=Y 0
— jwu — jwu WE 0z WE
EHO
The intrinsic impedance of the medium is 77 = CH - H Plane waves are
£

transverse electromagnetic (TEM)
waves, and obey the simple relationship

. kxE
H =="= where k is a unit vector in ol
17 s
the direction of propagation (Z in this >
case). The vectors (k,E,H ) are k
mutually orthogonal and form a right- R remon ]

handed system.
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Plane Wave Amplitude

Snapshot of a plane wave propagating in the +y direction E(y,t) = 2E, cos(at — fBy) at

time t =0

electric field strength
o
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Poynting’s Theorem

Poynting’s theorem is a statement of conservation of energy. For a volume of space, V,
bounded by a closed surface, S, and filled with a medium (o, 1, &)

Lo )
i(EXH)-ds :—ai(;£E2+;,uH2)w’v—£JE2dv

POWER FLOWING POWERSTOREDINTHE  POWER
THROUGH S FIELDS INSIDE OF S LOSSIN S

The quantity W = E x H (W/ m? ) 1s known as the Poynting vector. The instantaneous
value of the Poynting vector is
W (x,y,2.0) = E(x,y,2.0) < H(x,y,2,0) = Re{E(x, 3, 2)e /' [x Re{A (x, y, 2)e’*" |

and the time-averaged Poynting vector is

T
Wav = ;jW(x, v,z,t)dt = ;RC{E(X,)/,Z) XI:I(x, V,2) }
0

The time-averaged value can be found directly from the phasor fields quantities.
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Debye Model (1)

The Debye model has been used to predict the interaction of EM waves with materials
since about 1910. Molecules are represented by positive and negative charge centers.

ELECTRON
CLOUD (-) NUCLEUS (+)

THE CHARGE CENTERS ARE COINCIDENT
IN THE ABSENCE OF AN EXTERNAL FIELD

The response of a molecule to an external electric field is expressed in terms of a
polarization, P(t)
P = XEexi
ELECTRON —

CLOUD NUCLEUS (+)
CHARGE
CENTER (-)

- Eext

This is the simplest form of a dipole: two equal and opposite charges that are slightly
displaced. The separation that arises due to the external field is referred to as the
electronic polarization and the quantity Y is the susceptibility.
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Debye Model (2)

The susceptibility affects the electric flux density:
D(t) = £,E(0) + Y()E() = &,[L+ xW|E()
EI"

It takes a finite amount of time for the molecules to respond to an applied external field.
The response is of the form

Pt)y= P, e U7
X(0) Eexg

where T is the relaxation constant (about 1071 second).

Assumptions are that all dipoles are identical, independent, and all relaxation times are the
same. In fact, dipoles are spatially and temporally coupled, relaxation times vary, and
other types of polarization exist. The Debye model is never seen in real materials, but it
can be approached for single particle non-interacting systems such as gases.

Other types of polarization:
[onic: mutual displacement of the charge centers (10713 second)
Orientational: rotation of the molecules (107! second)

10
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Debye Model (3)

The modern view is that media have a far more complex EM relaxation behavior than
previously realized. Much of this has arisen from research involved with ultra-short pulse
lasers interacting with materials. New theories have been devised. The most promising in
the Dissado-Hill model that takes all of the spatial and temporal factors into account:

» Individual polarized molecules (dipoles) have a homogeneous lifetime, 7.

* In the coupled environment, the dipoles have an inhomogeneous lifetime, 7., that can
be greater than or less than 7,,. The inhomogeneous lifetime depends on the number of
other dipoles and their distances, as well as their relaxation times.

* Absorption of a wave passing through a material takes time. If 7, > T, then energy

extracted from the wave as it passes through the material can be returned back to the
wave.

This condition is called self-induced transparency the wave can penetrate the medium
without loss and therefore any radar absorbing material would be useless. This effect may
have been observed at optical frequencies (interpretation of the data is in question).

11
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Permittivity of a Dielectric With Loss

» Example of a material with resonances in the millimeter wave frequency region

» Complex dielectric constant: £, =&'— j&"

» Below millimeter wave frequencies, £ =1 and approximately constant and £" =0

(3 UHF to

microwaves

Infrared > ;
Dipolar - Ultraviolet

Phase velocity (£ 1is the real part)

High frequencies travel faster than
low frequencies

12
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Precursors (1)

Examine the transmitted wave that has a Very narrow pulse:

ENVELOPE CARRIER
TIME
P

When a conventional waveform passes through a material, the waveform out of the
material is a time delayed replica of the waveform at the input. (We assume that the
waveform has a long pulse width compared to the relaxation time of the material.) The
group velocity u, 1s usually taken as the velocity of energy propagation in the material.

(Neglecting distortions due to dispersion.)

_n _ﬁ Tl W ENVELOPE T%E

[T

< THOUGH MATERIAL - MMHMM Ti/[E
) YT

TIME
REFERENCE

13
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Precursors (2)

Precursors are features in waves transmitted through media due to the ultra-fast rise and fall
times of the pulse envelope. They occur because the transferal of energy 1s not
instantaneous. There are two types of precursors:

1. Sommerfeld: Due to the high frequency components of the pulse envelope
» Travels at the speed of light
e Largely independent of the medium

2. Brillouin: Due to the low frequency components of the pulse envelope

* Depends on the waveform properties (rise/fall times, carrier frequency, initial and
final values, etc.)

e Depends on medium properties (mobility of carriers)

e Penetrates more deeply into the medium (~ 272 ys. ~e% for Sommerfeld)
EXAMPLE: AMPLITUDE SOMMERFELD ~ BRILLOUIN  MAIN SIGNAL
VS TIME PLOT f

i
FROM T. W. BARRETT, / | ULTRA SHORT
INTRODUCTION TO ULTRA- [ PULSE
WIDEBAND RADAR SYSTEMS , / \ ,[\ A

R H .
‘ ‘\ }4 Y
i CONVENTIONAL
‘ PULSE

ADAADNDAR A
" TR e i e | e

14
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Propagation 1n Lossy Media (1)

As waves propagate through a lossy medium, energy is extracted from the wave and
absorbed by the medium. There are three general sources of loss:

1. ohmic loss, which is due to the collision of free charges in a conductor, and is
accounted for by a finite conductivity, 0 <o (0 = o is a perfect electric
conductor, PEC)

2. dielectric loss, due to polarization of molecules caused by an external electric field,
and 1t 1s accounted for in the imaginary part of &,

3. magnetic loss, due to magnetization of the molecules caused by an external
magnetic field, and it is accounted for in the imaginary part of (4,

Most materials are non-magnetic (4 = 14,,) and therefore magnetic losses can be neglected.

For all other materials, either ohmic loss or dielectric loss dominates. For an imperfect
conductor, an equivalent complex dielectric constant can be derived by introducing the
conduction current into Maxwell’s second equation

DXﬁ=j+JE+jw£=j+ju{£+ijE
w
*

£
c

15
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Propagation 1n Lossy Media (2)

The attenuation constant determines the rate of decay of the wave. General formulas for
the attenuation and phase constants of a conductor are:

5 1/2 = > 1/2
a=wlt \/1+(£j -1 g=wlH \/1+(£j +1
2 weE 2 weE

For lossless media 0 =0 = a =0.

Traditionally, for lossless cases, k is
used rather than . For good

conductors (0/awe>>1), a= .\ mufo,

and the wave decays rapidly with
distance into the material. A sample
plot of field vs. distance is shown.
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Surface Current and Resistivity (1)

For good conductors the current 1s concentrated near the surface. The current can be
approximated by an infinitely thin current sheet, with surface current density, J; A/m and
surface charge density, 0, C/m?

Current in a good conductor Surface current approximation
ki BOUNDARY ki BOUNDARY
777 — 777 >
P . J
— J S
S

At an interface between two media the boundary conditions must be satisfied:

() Ay X(Ey —E))=0 Q) Ay UE —E)=p/¢
(2) Ay X(H —Hy)=Jy (4)ny WH —Hy)=0

Jy Ps

REGION 1 *7721
> INTERFACE

REGION 2

17
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Surface Current and Resistivity (2)

The field in a good conductor is significant only within the first skin depth from the
surface. The skin depth is the distance into the material at which the amplitude has
decayed by a factor of 1/e.

|

SMALL RECTANGULAR
BRICK AT THE SURFACE

: . ! ! . ]
The resistance of the block is R =— =——, where 4 1s the cross sectional area transverse

A Otw
to the direction of current flow. If we choose a square of surface area, / =w, and the
thickness a skin depth O, (to be defined later, p. 40), then the result is the surface

resistivity, which is defined as R, = . It has units of “ohms per square” (Q/0)

as,

18
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Surface Current and Resistivity (3)

For a plane wave normally incident on a metal surface, the time-averaged power density
in the material 1s

2 2 A 2
_ ok E; _ E — RE: _
WaV :%Re{ExH}:%Re{_Ze 20’2}2: °_, 20z Re{l]} :22 0 o 20z

It 1s assumed that £, 1s real for convenience. For a good conductor the intrinsic
impedance is approximately

v Lt
=R+ j X =—
17 JA=s

S

(Note that the real part is equal to the surface resistivity previously defined.) We can
replace the original infinitely thick medium with an infinitesimally thin sheet that satisfies
the same boundary condition:

—

axH=J, - axaxH=axJ, - #lieB)-H(en)=axJ,

=0
. k;xE _-AxE . . .
where H = = and 77, 1s the surface impedance of the thin sheet.
s s

19
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Surface Current and Resistivity (4)

The boundary condition can be written as

Bogs = - Re{Exﬁ*}-ﬁ:—lRe AXE o H
2 -
NghxJ
) =2
:lRe nJ,snaxH :‘JS‘ RG{U}:‘JLR
2 S8 \ ) 2 S. 2 S

The surface impedance concept gives a convenient means of computing the ohmic loss of
conductors. We can avoid integrating the volume current inside of the conductor (a
volume integral), and need only integrate the surface current (a surface integral). This is
only an approximation, but it is very accurate for good conductors. These calculations are
necessary in order to determine transmission line loss.

20
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Circular Polarization (1)

A circularly polarized plane wave can be obtained by superimposing two equal amplitude
linearly polarized plane waves that are in space and time quadrature (quadrature implies
90 degrees):

1. space quadrature, £,0F, (for example, E_ vs. E y)

2. phase quadrature, a e*/M'2 factor between the two fields

Example: Two linearly polarized plane waves propagating in the z direction
E| = )%Exoe_jﬂz and E, = )A/Eyoe_]ﬁzeijm2
Equal amplitudes, £, =FE vy = E,
E(z)=E\(2)+Ey(2) = RE e /# + PE e /F M2 = 7P (34 j )

g
t
The instantaneous value at z =0 1s

E(z,0) = Re{E(2)e’“! } = $E, cos(wt) F IE,, sin(wt)

The vector rotates about the z axis. The tip of the electric field vector traces out a circle of
radius £,. The direction of rotation depends on the sign of ;.

21
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Circular Polarization (2)

The designation of RHCP is determined by the right-hand rule: the thumb of the right hand

is pointed in the direction of propagation, and the fingertips give the direction of rotation

of the electric field vector. Similarly, LHCP satisfies the left-hand rule.

z

% LEFT-HAND CIRCULAR / \, RIGHT-HAND CIRCULAR /

“\.POLARIZATION (LHCP),” ~ POLARIZATION (LHCP),~

- N -

~~

The above signs hold for e™” £ IfE xo * £, then the tip of the electric field vector

traces an ellipse. The resulting polarization is referred to as elliptical polarization.

22
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Example

We want to find the reflected field when a RHCP plane wave is normally incident on a flat
perfectly conducting surface,

Ej(2)=%E,e /% - jPE,e~
Assume that the reflected field is of the form
E.(z)=REe" /P + JE, e F
The total tangential field at the boundary (z = 0) must be zero
Ei(z) + E,,(Z) = )’e(Eo + Erx) + )?(Ery - jEO)E 0
Equate x and y components to obtain

El"X - _EO R
E,y = jE, E;
—
The total field 1s
» Z
E (z)=-%E,e"/* + jpE et /F «—
which is a LHCP wave. E, )
Y =

23
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Spherical Waves (1)

An ideal point source for electromagnetic waves has no volume. It radiates a spherical

wave (1.e., the equiphase planes are spherical surfaces). An arbitrarily polarized spherical
wave can written as

e‘J,BR

ER)=S——(Eq,8+En9)

» R= distance from the source (Note that
if the source is at the origin of the
spherical coordinate system then R=r.
Thus we will move the source to the
origin and use r in the next few charts.)

R

e 77 =impedance of the medium,
assumed to be real

* Eg,,Ep, are complex constants

24
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Spherical Waves (2)

Spherical waves are TEM, so the magnetic field intensity is

IQXE(r) _ fx(E909+E@§A0) gy _e_j'Br ~ A .
r o 0+ Ead)

and the time-averaged Poynting vector (assuming Eg,, £y, are real)

H(r) =

W, = %Re{E(r) xﬁ*(r)} - ﬁ(E&m Ep@)x (- E0+ Eg,)

: ((Eeo) (E@ 5 )f

22/7

The power flowing through a spherical surface of radius 7 1s

Py ”W -ds_%((Ego +(E ))T]fiz #r?sinfdOdy
-j—j;((Eeo) +(eq Plfsinodo="T 5 F +(e, )

=2

25
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Spherical Waves (3)

Note that the power spreads as iz (the “inverse square law”). We will see that a far field
r

region can be defined for any antenna. It is the region beyond a minimum distance, r,

where the wave becomes spherical with the following properties:
1. the wave propagates radially outward
2. it is TEM (there are only @ and ¢ field components)

3. the field components vary as !
r

At a large distance from the source of a spherical wave, the phase front becomes locally

plane.
FAR FIELD
LOCALLY A GOOD
APPROXIMATION TO
A PLANE WAVE
g
SOURCE SOURCE ¢ r :

26
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Spherical Wave Amplitude

Snapshot of a spherical wave propagating outward from the origin.

. A E : : :
wave E(r,t) = 8—%cos(ax — [r) in the x-y plane is plotted at time
r

ELECTRIC FIELD INTENSITY
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Rays are often used to represent a propagating wave. They are arrows in the direction of

propagation (k) and are everywhere perpendicular to the equiphase planes (wavefronts)
The behavior of rays upon reflection or refraction is given by a set of rules which form the

basis of geometrical optics (the classical theory of ray tracing)

We will see that if an observer gets far enough from a finite source of radiation, then the

wavefronts become spherical

At even larger distances the wavefronts become approximately planar on a local scale

SPHERICAL WAVE FRONTS

PLANE WAVE FRONTS

N\

28
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Wave Retlection (1)

For the purposes of applying boundary conditions, the electric field vector is decomposed
into parallel and perpendicular components £ = £ + Ej

Ep is perpendicular to the plane of incidence
EII lies in the plane of incidence

The plane of incidence is defined by the vectors lgi and n

DECOMPOSITON OF AN ELECTRIC FIELD

PL‘?\NE WAVE INCIDENT ON AN VECTOR INTO PARALLEL AND
INTERFACE BETWEEN TWO DIELECTRICS PERPENDICULAR COMPONENTS
TRANSMITTED
MEDIUM 2
& My
/S
INTERFACE
&,
MEDIUM 1

NORMAL

INCIDENT REFLECTED

29
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Wave Retlection (2)

Ei go H o %
- ¢ £ U
2 r r
H, kb
L/
FREE SPACE 6; DIELECTRIC
n - >
g ¥ z
e 0}" to E
H, - X
[} H’, kt
¥ E,

PERPENDICULAR POLARIZATION

e u b
o o /
- C L/ gr H r
E: k. V
1 1 %
FREE SPACE 91 DIELECTRIC
n < g —»>
6 L H ;
- r
E, B
L% H,
PARALLEL POLARIZATION

The incident fields (£;, H,) are known in each case. We can write expressions for the
reflected and transmitted fields (E,,H,) and (E,,H,), and then apply the boundary

conditions at z=0:

(Ei * E’”X = (EtXtan and (H’ * ﬁrx - (Ij]’fxtan

tan

tan

There 1s enough information to solve for the coefficients of the reflected and transmitted

waves.

30
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Wave Retlection (3)

Summary of results:

REGION 1 REGION 2
FREE SPACE |,
£, M, {, DIELECTRIC
. £ U
[ ro o
A
6.
1
n -
6, 6
A INTERFACE
A

sin@, =sinf =.c u sin@
1 r r-r t

/70 - & and ,7 - /'II"/’[O :/70 &
£0 EI’EO gl"

Reflection and transmission coefficients:

Perpendicular polarization:

_ncosB; —nycosb,
ncos@; +1nycosb,
_ 2ncos6;
I'g=
ncos; +1nycosb,

g

E,p=TpEpand E;q=Tpkg
Parallel polarization:
r= ncosB, —ngycosb;
| ncos, +n,cosb;
2ncosé;
ncos6B, +n,cosb;

n=
E, =Ty and Ey =Ty

31
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Wave Retlection (4)

Example: A boundary between air (17, =377 Q) and glass (&, =4,n7 =188.5Q).
See the following charts for plots of reflection coefficients vs. incidence angle.

Two special cases:

1. Brewster’s angle is the incidence angle at which the reflection coefficient is zero. For
parallel polarization this requires 77cos8, — 1], cos8; =0, or

cosé, :lcos@ :lJl—sin2 G, :i\/l—isin2 6 = Oz =tan"'. g, =63.4°
Mo Mo Mo €

r

2. Total internal reflection (&, = 71/2) occurs at the critical angle of incidence, when the
wave 1s impinging on the boundary from the more dense medium

siné’t: UE sin(77/2) / \/7 — sin6, _1 5 =30°
. C

sind, \| W, &, sin 9

This is the basis of fiber optic transmission lines.
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Wave Retlection (5)

Boundary between air (&, =1) and glass (&, =4)

AIR-GLASS INTERFACE,WAVE INCIDENT FROM AIR AIR-GLASS INTERFACE,WAVE INCIDENT FROM GLASS
1 1 1 1 1 1 1 1 1 1 1 1 1 L} 1 1
/ / 0.9
PERPENDICULAR 0.8 PERPENDICULAR
POLARIZATION / / 0.7 POLARIZATION
] /
©
pad | | E /
/ £ 05 /
o
T BREWSTER'S / 04 _'\/
ANGLE 0.3 PARALLEL
\ | / \ [ POLARIZATION
PARALLEL 0.2
POLARIZATION ¢ / 01 \ /
1 1 1 1 1 VI 1 0 1 1 \/ 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90
theta, degrees theta, degrees
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Example of a plane wave incident on a boundary between air and glass (&, = 4,6, =45")

TRANSMITTED

GLASS

Ll L

AIR

g.

1

6,

r

NORMAL

INCIDENT REFLECTED

10

INCIDENT WAVE

BOUNDARY
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Example of a plane wave reflection: reflected and transmitted waves (&, = 4,0, =45")

10

REFLECTED WAVE

BOUNDARY

TRANSMITTED WAVE

BOUNDARY

e T
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Wave Retlection (8)

Example of a plane wave reflection: total field

10

_
|
8 1 e The total field in region 1 is the sum of the
6} 1' incident and reflected fields
|
ar
Al -I e Ifregion 2 is more dense than region 1
BOUNDARY 1 (i.e., £ > &,1) the transmitted wave is
"% : refracted towards the normal
=24 1
-4r q e Ifregion 1 is more dense than region 2
op) O O N Q | (i.e., &1 > &.7) the transmitted wave is
g\ QO OO OO OO refracted away from the normal
Falaisiialaliaiiaian d
10 5 0 5 10

36



Naval Postgraduate School Department of Electrical & Computer Engineering Monterey, California

Example (1)

An aircraft 1s attempting to communicate with a submerged submarine directly below.
The frequency is 0.5 MHz and the power density of the normally incident wave at the

ocean surface is 12 kW/m?. The receiver on the submarine requires 0.1 4V/m to
establish a reliable link. What is the maximum depth for communication?

AIR
/10,50,0- =0
_ X
z=0 B - 77777777
H, E,
OCEAN
! A U, & =72,0 =4S/m
kl‘
The phasor expression for the incident plane wave is E;(z) = XE Oe_j Po? \where
m ¢ _ 3x10° . o
B, =w\U,E, = T A, = ? =————*= 600 m. The time-averaged power density is
0.5x10
(0]
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Example (2)

At the ocean surface, z=0, and from the information provided we can solve for £,

. E \2 2
Wavi(z)‘:ﬁflle(f Wm* = |E,|"=(12x10°)(2)(377) = |E,|=3008 V/m
]

Below the ocean surface the electric field is given by E,(z) = %E,Te ’*, where the
transmission coefficient is determined from the Fresnel formulas

r=7"" andr=1+r=—21_
7 +’70 7 +/70
To evaluate this we need the impedance of seawater
n = \/ Ho_ | My Hy
E, _ .0 . g
&= 505{1 = J J
W E,E,W
) 4 o :
Note that = =2000 >>1 which is typical of a good

E,E,00  271(5%10°)(8.85%1071%)(72)
conductor. Thus we drop the 1 in the denominator for good conductors.
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Example (3)

+ :
n=.j wgo—l J w”0—07(1+]) 0.9899¢/%5" = |le’®

5
Now the transmission coefficient 1s
+ ; _ . o .
27 _ 204 )O07) 554107374489 = e/

n+n, (1+7)(0.7)+377
At depth z the magnitude of the electric field intensity is

«71/2
‘Et(Z)‘ :Jﬁt(z)o Et(z)* :[()?EOTe_(a"'j'B)Z). (XEOTe_(a'Fj'B)Z) J :‘EOHT‘e_aZ

where the attenuation constant is

ool

a= “’”0 = [T ft,0 = m(5%103)(4rx1077 )(4) = 2.81 Np/m

1/2
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Example (4)

Similarly, for a good conductor the phase constant 1s
1/2

S B I

At what depth 1s ‘Et (z)‘ =0.1 4V/m?

0.1x107° =|E, |r]e™*%!% = (3008)(5.24 x 107> )e~>512
-2.81z=-18.88
z=6.7m

A common measure of the depth of penetration of the wave in a conductor 1s the skin
depth,d, . It is the distance that the wave travels into the material at which its magnitude is

1/e of 1ts value at the surface

‘Et(O)‘e_l:\E(,Hr\e'lz\EOHr\e_aés = ad, =1 = O,=l/a=1/mfuc

(Note that for a nonmagnetic conductor (/= 4, .)
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Example (5)

The instantaneous (time-dependent) expression for the field is
Et (z,t) = Re{chEoe_J)BZeja;t}

Note that in general £, can be complex and written in polar form £, = ‘E O‘ej ®o. The

phase depends on the altitude of the transmitter and the phase of the wave upon leaving
the aircraft antenna. We can not determine ®, from the information provided, and

furthermore, it is not important in determining whether the link 1s established. Thus,

E,(z.1) = Re{trle ®r |E, [e/®0 @+ IP) 7% | = 31| |e™77 cos(wt - & + B, + ;)

let xEt(Z) — )A/Eore—yz
fl 7l

The magnetic field intensity phasor is H,(z) = and the

instantaneous value

-

laY

27le/®Pr \Eo\ejq’o

r

H,(z,1) = Re; e (@riB)z jwt

e
= %ﬁo‘e_az cos(a)t - E+D, +D, - CD,7)
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Common Two-Wire Transmission Lines

Twin lead or two-wire

DIRECTION OF
PROPAGATION
—

CONDUCTOR . CONDUCTORS
SEPARATION d E / (RADIUS a)
A A

U

Coaxial (“‘coax”

DIRECTION OF INNER CONDUCTOR
PROPAGATION . (RADIUS a)

El ;t-—el . o A
i OUTER CONDUCTOR
““““““““““““““““ o (RADIUS b)
Microstrip
CONDUCTOR
DIRECTION OF SUBSTRATE
GROUND PROPAGATION

(DIELECTRIC)
PLANE

AT %%
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Distances Relative to Wavelength

» The behavior of voltage and current waves on transmission lines is distinctly different for
high frequencies than it is for low frequencies.

* For low frequencies (defined by circuit dimensions and distances << than the wavelength)
“lumped” elements can be used to predict the current and voltage. A lumped element exists
at a point in space. This is the standard “AC” circuit analysis assumption.

e Example: at 60 Hz the wavelength is 5 million meters. The length of a 1 cm resistor is
insignificant compared to a wavelength, therefore the lumped element assumption is valid.

e At high frequencies (defined by circuit dimensions and distances >> than the wavelength)
the lumped element model is not valid.

» Example: at 10 GHz the 2 cm
wavelength is 3 cm. The length «—
of a I cm resistor is on the same — = A
order as a wavelength. The Current in the
lumped element assumption is resistor at:
not valid. A: 100 MHz
B: 1 GHz
C: 10 GHz
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Transmission Line Equations (1)

A short length (Az) of a two-wire transmission line has the equivalent circuit shown

below:
i(z,t) i(z+Az,1)
A B g
+ R’ L +
v(z,1) G' % == VEthzD
< Az >

R’ is the total resistance of the conductors (Q/m)

L' is the inductance due to the magnetic field around the conductors (H/m)

C’ is the series capacitance due to the electric field between the conductors (V/m)
G' is the is the conductance due to loss in the material between the conductors (S/m)

Special case: lossless transmission line

1. perfect conductors, g = oo and thereforeR' =0

2. perfect dielectric filling the region between the conductors, £" =0 and
therefore G' =0
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Transmission Line Equations (2)

Use Kirchhoff’s voltage law at node A and take lim

JAVARNY ()
_0v(z,t) = Rli(z.1) +L,az(z,t)
0z ot
Use Kirchhoff’s current law at node B and take Iim
JAVARN (]
_0i(z,1) = G'v(z.1)+ C,Gv(z,t)
0z ot

For the time-harmonic case 0/0¢t - jw

D= (R ja)i)

e R e) JE e
dz

This is a set of coupled integral equations. Take d/dz of (1) and substitute it in (2) to get a
second order differential equation for V' (z)

2
d V§Z) _\(RI +jaLr)(Gr +]0E’)V(Z) =0
dz ;2
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Transmission Line Equations (3)

The propagation constant is determined from the transmission line parameters
y=R+jal G+ jeC") =a + jB
The phase velocity is u,, =@/ 5.

In a similar manner a differential equation can be derived for the current. Together they
are the transmission line equations (wave equations specialized to transmission lines)

d* () ~y*V(z)=0 and d*1(2)

dz* dz*

-y*1(z) =0

A solution for the voltage is
V(z)= V0+e_yZ + Vo_e+yZ

The first term i1s a wave traveling in the +z direction and the second a wave traveling in
the -z direction. If this is inserted into (1) on the previous page then the result is

I(z) —#(Vﬁe_y" vt
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Transmission Line Equations (4)

The corresponding solution of the differential equation for the current is
I(z)=1 e +1 e™”

Comparing the coefficients of the terms in the two equations gives the characteristic
impedance

e Vo _ Vo _RH+ja_ :\/R'+jaL’
o — ! . 1 ! . !
I; I y G+ jawC G + jawC

Example: Airline (¢ =&,, 4= U,,0 =0) with perfect conductors (O,,q4 = ) operates at

700 MHz and has a characteristic impedance of 50 ohms and a phase constant of 20 rad/m.
Find L', C' and the phase velocity.

Since R"'=G'=0 = a=0, and y=./jaljwC = jw/L'C'=jB = ;20

I + . I I
Z, = R, J aL’ = L, =50. Solve the two equations to obtain C' =90.9 pF/m and
G'+ jaC C

L'=227 nH/m. The phase velocity is u,, = w/ B =1/L'C’' =2.2x10° m/s =0.733c.
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Transmission Line Equations (5)

Formulas are available for computing the transmission line parameters of various
configurations. For example, a coax with inner radius a and outer radius b:

G= 20 o= 2 Hbia), R =2s1/a+1/b)
In(b/a) In(b/a) 27 27
ﬂf:ucond

where R = 1s the surface resistance of the conductors, f,,q 1S 1ts permeability

Ocond

and 0,4 1ts conductivity. Note that (/, £ and o0 are the constitutive parameters of the
material filling the medium between the conductors.

For transmission lines that support transverse electromagnetic (TEM) waves the following
relationships hold:

I

L'C"= ue and EIZE
C ¢

An important characteristic of TEM waves is that £, H and the direction of propagation
z are mutually orthogonal. That is, the electric and magnetic field vectors lie in a plane
transverse to the direction of propagation.

48



Naval Postgraduate School Department of Electrical & Computer Engineering Monterey, California

Transmission Line Circuits (1)

A transmission line circuit is shown below. The source (generator) and receiver are
connected by a length ¢ of transmission line. Assume a lossless line (y = jf3)

> >
+ + + !
Vg<> Vin; Zo VL? Zy
z=—/ z=0

The current and voltage on the line are given by

+ —_
V(Z) = V0+e_JIBZ + Vo_e+]ﬁz and ](Z) = %Q_JIBZ B %64-]’82

o o

The boundary condition at the load (z =0) can be used to derive a reflection coefficient

’ :V(O):V0+ +V0_ — r:V0+ :ZL _Zo E“—‘ejq)r
1(0) Q_Q V> Z; +7Z,
Zy Zg
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Transmission Line Circuits (2)

Three special load conditions are:

1. If the load 1s matched to the characteristic impedance of the line then Z; =7, and
=0

2. If the line is open circuited then Z; =co and [ =1 (|[|=1,® =0)

3. If the line is short circuited then Z; =0 and [ =-1 ([[| =1, =71)

The total voltage at a point on the line is given by
V(z)= VO"‘e_j,BZ +V0_ej’BZ = V0+ —JjB L0 Vo e]ﬂZ
VO
) V+( —Jjx + re]ﬁz)—
V()| =V (W (2) = {1ﬂr\+2ﬁkmmu%+¢rﬁ“2

+(ﬁ&+kary&)
The maximum and minimum values of the voltage are

O
maX ‘V‘ mln ‘V‘

If ' #0 there is a standing wave component to the voltage and current.

)
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Transmission Line Circuits (3)

Voltage plots for three load conditions (A =1m):
[ = -1 (SHORT)

N
-
N

V]
- &

z=-25 z=0

0.5
0
2 -1 0
I =1 (OPEN) z
2 2 —
- J 7T
15 15 =02e

VI
VI

0.5 0.5

-2 -1 0 -2 -1 0
z V4

The load impedance for the last case can be computed from the reflection coefficient

Z, -7 " - : +
r==L O:Z,L L0203 = Z'L:ZL:1 I_:1.14+j0.41

o
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Monterey, California

Transmission Line Circuits (4)

* Voltage maxima occur when cos(2&Z +®)=1 =

increasing 7 is in the —z direction.) Maxima are spaced A/2.
* Voltage minima occur when cos(2/z + Pr)=-1 = 2[4+ D

Minima are spaced A/2.

* The voltage standing wave ratio (VSWR) is defined as s =

1<s<o0.

Plot of voltage and current for Z; =0.1 (A =1 m).

2

20+ ® =-2nn. (Note that

= —(Zn + 1)77
‘ ‘max - (1+ “_D. Note that
Vo A=1TD
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Transmission Line Impedance (1)

The impedance at any point on the line is the ratio of the voltage to current at that point

INAC I/ |4 wreti| L 1arelt
_I(Z)_V+[_- gl 1-Te/2F
o e JE _ re+],52]
ZO

At the mput of the line z = —/
7. =7 I+ re_JZIBg =7 ZL + jZo tan(ﬁf)
Y% —re 2R 0 Z + jZ, tan(BY)

1

For the purpose of computing the power delivered to the load, the load and transmission
line can be replaced by an equivalent impedance Z,

4 V,Z,
Zg Lin i =——=5— and Vin = linZin =5~
+ —’—E— Z g +Z in Z g + 7 in
Vg <> Via Zi, The powei delivered to the load and line combination 1s
- B i By =Vinlin
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Transmission Line Impedance (2)

Power on a lossless line 1s computed from the voltage and current

V(z)=V, e FE TV eI =y +V,

1nc
+

vro_.
I(2)="e omif _r Yo *if —

Z nc +17 ref
o 0 J o 0 J
INCIDENT REFLECTED
WAVE WAVE

The incident instantaneous power in the incident wave is
P, =RelV; e/ Rell; e/}
o, ja) gl Vo 167 ja| 1V P o
=Re{| T el Toe }Re S e/t = ; cos”(axr +P,)

o 0

where it has been assumed that Z, 1s real. A similar analysis of the reflected wave yields

P.=- |Z| I|cos® (ax + @, +®r)

o
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Transmission Line Impedance (3)

The time-averaged power is obtained by integrating the instantaneous value over a period

T +2 1/f + 0 ‘0
Fyy, = lf dt = | o I [ cos (aI+CD )dt— wnV, " _V, |
T Z,(1/f) o 2nw Z, @ 2Z,

Similarly for the reflected power

Bwr:—wfp

and the average power delivered to the load is

+2
Py, =Py +P :JK’|ﬁﬂw4

In order to deliver all power to the load we must have \I'\Z - 0.
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Transmission Line Impedance (4)

Input impedances for the special load conditions

0+ jZ,tan( /)
Z, + jOtan(f/)

oc _ o+ jZ,tan(Bl) |_  Z,
m (0] .
Z, + jeotan( )

1. Short circuit: Zi) =Z 0{ } = jZ, tan( ,BK)IB = jZ,[B¢ which is inductive
¢ — 0

—

2. Open circuit: Z = =—jZ,/ Bl which is

jtan(fBl) pr-0

capacitive

Z, + jZ, tan(B0)
Z,+ jZ, tan(f)

3. Matched line: Z, =7 0{ } =7, (Note it 1s independent of the line

length.)

Input impedances for some special line lengths:

{ZL +jZ, tan(i‘[)}
:ZL
Z

1. Half-wavelength line: Z;, =Z,
Z, + jZ; tan(J1)

Z; + jZ,tan(71/2)
ZO +jZL tan(ﬂ/2)

2. Quarter-wavelength line: Z;, = 0{ } =Z 02 /Z;
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Impedance Matching

For “off-the-shelf” components that must be used in a system, fixed values of Z, are used.

Common values are 50, 75 and 300 ohms. Most devices (antennas, couplers, phase
shifters, etc.) are not “naturally” 50 ohms. An impedance matching circuit must be
inserted between the 50 line and the device. The impedance matching circuit is usually
incorporated into the device and sold as a single package as illustrated below.

MISMATCHED MATCHED
JUNCTION JUNCTION

Z, MATCHING Zy

NETWORK

Zy 7

o

\*: IMPEDANCE
>
Z,

Zy

Three common matching techniques:
1. quarter-wave transformers
2. stub tuners
3. series and parallel lumped elements

In general, the imaginary component of the load impedance must be cancelled and the real
part shifted to Z,
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Quarter-Wave Transformers (1)

MATCHED

JUNCTION Al4
z oz [z
Zinzzo

If a quarter-wavelength section is inserted between the transmission line and load, the
input impedance is

in 0

7 =7 {ZL + jZ, tan(77/2)

12 — '
= =72/, =72, = Z =.7Z/7
Z,+jZ; tan(lT/Z)} o fHL T ¢ oL

Note that all of the impedances involved must be real.

Example: What is the characteristic impedance of a quarter-wave section if it 1s to match a
100 ohm load to a 50 ohm line?

Z) =.Z,Z; =(50)(100) =70.7 Q
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Quarter-Wave Transformers (2)

A quarter-wave

If the frequency is changed

from its design value, then 1 4/3 13 \
o 113V ) 16/9
the cancellation is no 13 o
J

transformer 1s designed so 10002 2000 400Q = 400Q
that reflections from the |
two junctions cancel _ - .,
(destructive interference). r=1/3 1 r=-1/3 r=1/3
T=4/3i r=2/3 r=4/3

longer complete. (827 et i
i 4127 Ay | suws
i W 102V
| -4/81 J |
SUMS 8243 4 i
TO -1/3V i 4/243 J‘%_;_; 17/729
| 41294 | )
8/2187 €— -4/729 . | :
L | 412187 '
>

ROUND TRIP GIVES
PHASE SHIFT (- SIGN)
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Transmission Line LL.oss and Attenuation

Consider a length /¢ of transmission line

—> —>

Z 2
P, NE.nz 0 Fout N‘Eout‘

) { g

If the incident wave is TEM, then the field at the output can be expressed as

E i =|Einle @ and the transmission coefficient of the section is

j = 201og(e“’f )

Example: A shorted 5m section of transmission line has 8 dB of loss. What is the
attenuation coefficient?

m

‘T‘ — ‘Eout‘ = e—CM = Igg = 20 log( Eout

Because the line is shorted the wave travels 10m and therefore,
-0.4
201og(e‘1°”): -8 = =107 o g _nfo™)_ 0.092 Np/m
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Waveguides (1)

Waveguides are an efficient means of transmitting microwaves. They can be hollow or
filled with dielectric or other material. The cross section can be of any shape, but
rectangular and circular are most common. First, we examine propagation in a rectangular
waveguide of dimension a by b.

Waves propagate in the + z direction: E(z), H(z) ~ e/ | TFirst separate Maxwell’s
equations into cartesian components ( L, &€ refer to the material inside of the waveguide)

N

oF

=+ jpE, =—jw,

o JPE, =—jwut |

. 0E . s
—],BEx—aZ:—]CU,tu$D><E:—]CU,uH

X

0E, OE

Y _ X =—ic

o 0y JOHH
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Rearranging

0H \
=+ jOH, = jwd
o JPH , = jwd,
— jBH _6;]62 = jw&,  OxH = jowd:
0H
L
Ox dy
= OF, aHZj
E. = £ + wi
Yo Wue- 20 ox 0y
o E OH
E = _IB z + Wl z
Yo e - B2 dy Ox
MRV SLTA
w”ue - LB dy 0x
= 0E. OH
H, = WE—=+ f—=
Y oWue-pA ox T Oy
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Waveguides (3)

The wave equations are:

O%E = -’ uek
0% H = -0’ uel
,_ 9% a9 o 9 22 .
Note that [1° = + + and — = (- jB)° =—f* and the wave equations for the

oxz ? 0z¢ 97’
z components of the fields are

2 2
[

2 2
(RS

TEM waves do not exist in hollow rectangular waveguides. The wave equations must be
solved subject to the boundary conditions at the waveguide walls. We consider two types
of solutions for the wave equations: (1) transverse electric (TE) and (2) transverse
magnetic (TM).
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Waveguides (4)

Transverse magnetic (TM) waves: H_ =0 and thus H is transverse to the z axis. All field
components can be determined from E,. The general solution to the wave equation 1s

E,(x,y,2)=E, (x,y)eijﬂz =E,(x)E, (y)eijﬂz
= (4cos(B,x) + Bsin(B,x))Ccos(B, )+ Dsin(B, y)Je* /#

where A4, B, C, and D are constants. The boundary conditions must be satisfied:

x=0-A4=0

E_=0 at{y:()—»C:O

Choose S, and [, to satisfy the remaining conditions.

E.=0atx=a: sin(8.a)=0 = Ba=mm = ng:m_ﬂ (m=12,...)
a

E,=0at y=b: sin(B,b)=0 = Bb=nm = ﬁy:% (n=12,..)

64



Naval Postgraduate School Department of Electrical & Computer Engineering Monterey, California

Waveguides (5)

For TM waves the longitudinal component of the electric field for a +z traveling wave is

given by
E,(x,y,z)= USin(m—nxj sin(%yje_fﬂz
a

where the product of the constants 4B has been replaced by a new constant U . Each
solution (1.e., combination of m and n) 1s called a mode. Now insert £_ back in the wave

equation to obtain a separation equation:

e (7))

If ,82 >( then propagation occurs; ,82 =0 defines a cuttoff frequency, f, Cn ?

=il (2) )
Cmn 9 HE \\ a b

Waves whose frequencies are above the cutoff frequency for a mode will propagate, but
those below the cutoff frequency are attenuated.
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Waveguides (6)

Transverse electric (TE) waves: £, =0 and thus E is transverse to the z axis. All field

components can be determined from A ,. The general solution to the wave equation is

HZ (.X',y,Z) = HZ (xay)eijﬂz = Hz(x)Hz(y)eij’BZ
— (A cos(,Bxx) +B sin(,Bxx))(C cos(ﬁyy) +D Sin(ﬁyy))eijﬂz

: H H
But, from Maxwell’s equations, £, [ a—z ~ cos(M y} and E y [l a—Z ~ cos(m—nxj.
dy b Ox a
Boundary conditions: E_ =0at y=0 - D=0
E,=0atx=0-B=0
nri
E.=0aty=>b - =—, n=0,1,...
x y By A
E,=0atx=a - B, :m777’ m=0.1,...
Therefore, H,(x,y,z)= Vcos(m—l7 xj COS(% yje_jﬁz (m =n =0 not allowed)
a

The same equation for cutoff frequency holds for both TE and TM waves.
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Waveguides (7)

Other important relationships:

» Phase velocity for mode (m,n), u, = - where u =1/./ 4€ is the phase

P 2
1=Ue, 1 7)
velocity in an unbounded medium of the material which fills the waveguide. Note the

the phase velocity in the waveguide is larger than in the unbounded medium (and can be
greater than c).

* Group velocity for mode (m,n), u, = uJ 1- ( fcmn /f )2 . This 1s the velocity of energy

(information) transport and is less than the velocity in the unbounded medium.
* Wave impedance for mode (m,n),

Zp = 7
B -(r, 1rF
Z1™,, :’7\/1 _(fcmn /f)2

where 77 =/ /£ is the wave impedance in the unbounded medium.

 Phase constant for mode (m,n), £,, = & E\/ 1- (f Coon /f )2

Mp u
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Waveguides (8)

A

CN

where A is the wavelength

* Guide wavelength for mode (m,n), A,

in the unbounded medium.

The dominant mode is the one with the lowest cutoff frequency. For rectangular
waveguides with a > b the TE;, mode is dominant. If a mode shares a cutoff frequency

with another mode(s), then it 1s degenerate. For example, TE;; and TM are degenerate
modes.

Example: If the following field exists in a rectangular waveguide what mode is

propagating?
E.= SSin(z—l7 xj sin(ﬁ yje_jzz
a b

Since £, # 0 it must be a TM mode. Compare it with the general form of a TM mode
field and deduce that m=2 and n=1. Therefore, it is the TM ,; mode.
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Waveguides (9)

Example: What is the lowest frequency that will readily propagate through a tunnel with a
rectangular cross section of dimension 10m by Sm?

If the walls are good conductors, we can consider the tunnel to be a waveguide. The
lowest frequency will be that of the dominant mode, which 1s the TE;; mode. Assume

that the tunnel 1s filled with air

£ :#[lj: ¢ —-15 MHz
0 "2 e \a) 2(10)

Example: Find the five lowest cutoff frequencies for an air-filled waveguide with a=2.29

cm and »=1.02 cm.
1 m 2 n 2
Fom =3 003) *(o0102)
mn 2 g [\ 0.029 0.0102

Use Matlab to generate cutoff frequencies by looping through m and n. Choose the five
lowest. Note that when both m,n > 1 then both TE and TM modes must be listed. (The
frequencies are listed in GHz.)

TEOl (1471),TE10(655),TE11 and TMI 1 (1610),TE20 (1310)
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Waveguides (10)

Example: Find the field parameters for a TE|y mode, /=10 GHz, a=1.5 cm, 5=0.6 cm,
filled with dielectric, &, =2.25.

Phase velocity in the unbounded medium, u =c¢/~/2.25 =3 X% 108/1.5=2x%10% m/s
Wavelength in the unbounded medium, A =u/ f =2x10%/1x10'° =0.02 m

Cutoff frequency, f.  =u/(2a)= CIN2.25 _ 0.67x10'° Hz
(2)(0.015)
Qu 2
Phase constant, =—./1- / = 1- O 067/1) =74.5/r radians
Bro = 1=(t,, /1P = 2P 5
0. 745
Guide wavelength, A, A _ 002 _ 0.0268 m

\/1 fcmn /f) 0.745
Phase velocity, u, =u/0.745=2x10°/0.745=2.68x10° m/s
n _N,/N225 _ (377)
Jl ~(r. 7 f)z 0.745  (0.745)(1.5)

Group velocity, u, =0.745u = (2x10%)(0.745) =1.49 x10% m/s
g

=337.4 ohms

Wave impedance, Z1g
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Mode Patterns in Rectangular Waveguide

AT A TR TOMOHEOT TR

H?EEEEEEEEEE —————— |{fiii “EEZ i
SRR e PR ﬂ@”ﬂ% &
e A A 7 RARRE
g (I T :zlz T TS
e [l sl il YA

From C. S. Lee, S. W. Lee, and L. L. Chuang, “Plot of Modal Field Distribution in Rectangular and Circular Waveguides,” IEEE Trans. on MTT, 1985
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Table of Waveguide Formulas

QUANTITY

TEM (E, = H, =0) ™ (H, = 0) TE (E, = 0)
WAVE . y . Joi
RAL: =L ENERAL:  Zy =12
IMPEDANCE, Z Zrem = 11 =E OENERAL “m jwe N Ty
. 2 i
f>fe mL=(fe/ 1) > fe —
—ih 1=(f./ 2
R IR e e,
< c:
1=(f 1 1)}
PROPAGATION jk = jasyue GENERAL:  hyl=(f./ f) GENERAL:  hyl=(f./ /)
CONSTANT, y b > b >
[>fe JB=jkA1=(fe ) [>fe JB=jkA1=(fe )
f<fe a=ml=( 1L | r<fe a=ii-( ) L)
PHASE 1 GENERAL: wlf GENERAL: wlf
VELOCITY, u U= . _u . U
Up NHE f>Je f>Je
1=/ 1 1) 1=/ 1 1)
f<f.. ~NOPROPAGATION | f<f.: NOPROPAGATION
VECTOR FIELD S = __ ) oo _ Y
RELATIONSHIP H=—"—kxE r=T7 Urk; Hy 2 UrH,
TEM ~ i . = A
H= SXE E=—ZigzxXH
ZTM
h . 2 2 . s
Cutoff frequency: f,. = e m Propagation constant: y = W —k* Transverse Laplacian: DZT = 5 +$
mit nit A

For a rectangular waveguide (a by b): h = J (

a

2 2
j +(7) Guide wavelength: A

S
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Bandwidth (1)

The equivalent circuits of transmission lines and antennas are comprised of combinations
of resistors, capacitors and inductors. The transmission coefficient, or gain in the case of
an antenna, 1s frequency dependent. The range of frequencies over which the device has
“acceptable performance” is called the bandwidth of the device. For example, the gain of
a typical antenna has the following general frequency characteristic:

Note that gain can be viewed as a scaled value of the antenna’s transmission coefficient.
We will see that other performance measures, not just gain will determine its bandwidth.
Specifying frequencies where the gain exceeds the minimum value as in the operating
band, the bandwidth is f;; — f;. The center of the band is £, =(fy + f1)/2.
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Bandwidth (2)

Information transmission systems, such as radar and communications, require a finite
(non-zero) bandwidth. Consider the following waveform as an approximation to a
modulated carrier that a radar would employ. In the time domain the signal is

eja)ot + e_jwot eja)mt + e_jwmt
s(t) = cos(w,t)cos(w,,t) = 5 5

The spectrum of this signal has two spikes centered about the carrier frequency, + @,

T Y O 1 O VI | ‘T‘
\\vaW]WQM\MVq/m\\ \JﬁMHVMIXVM\M/\/ >, | L2,
L LR AL b1 oo [ -+

Therefore, in order to pass this signal without removing any frequency components, the
required bandwidth is B =Af =2«,,. This is an example of a bandpass device. Ideally

we would like the amplitude of the transmission coefficient to be constant over the
passband. It is usually “bell-shaped” as depicted in the previous chart. Common cutoff
choices for the edges of the band are the —3dB, —6dB, and —10dB points.
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Filter Characteristics

Filters are characterized by their transfer functions (i.e., Fourier transform of the impulse
response, h(?)) |H(f)| =|7] =41 _“_‘2

plotted as return loss in dB, 201og;,(I'[), or transmission loss in dB, 20log;,(/7]). Note
that in many cases the phase of the characteristic function is also important.

, where I 1s reflection coefficient. It 1s usually

= A N |
7] 7
g o it S of- \ A
z Z

LOW PASS 8
Z S PASSBAND
2 PASSBAND FILTER Z HIGH PASS )
: e ] . o
b4 Z
< A L
= ol =~

fH fL fH =00
m
=4 I\ BAND STOP
g L Z FILTER
L s = o P (i
Z BAND PASS z
2 FILTER PASSBAND =
S 2 |PASSBAND STOPBAND PASSBAND
z 5l Z P
S I Lz %
H—()0 F—OO »
Jr Ju 1 f

75



Naval Postgraduate School

Department of Electrical & Computer Engineering

Monterey, California

Coordinate Transform Tables

N N N

X ¥ z
O | cosg sing 0
@ | —sing cosg O
z 0 0 1
Rectangular and cylindrical
X ¥ z
F | sinfcos¢ sinfsin¢g cos@
g | cosBcos¢g cosBsing —sind
@ —sin ¢ Cos ¢ 0
Rectangular and spherical
P ¢ Z
7 | sind 0 cosé
g | cos@ 0 -sinb
| O 1 0

Cylindrical and spherical

Example: from top table, reading across,
O=xcos¢+ysing
and reading down,
%= Dcosg - @sin ¢
The tables also can be used to transform
vectors. The unit vectors in the table

headings are replaced by the corresponding
vector components. For example, given

A=AZ+ AP+ 4,2

in Cartesian coordinates, the vector can be
expressed in cylindrical coordinates as

Ap= A, cosgt A, sing+ 4, [0
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Coordinate Systems

A
r:\/xz +2 422 = /pz 1,2

=162

@=tan \;)
_.. -1 P)
6 =tan IK;)

ds, = 7sin@dOdg

Direction cosines are the projections of
points on the unit sphere onto the xy
plane. They are the x,y, and z
components of 7:

u =sinfcos¢
v =sinfsing@
w=cosf
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Azimuth/Elevation Coordinate System

Radars frequently use the azimuth/elevation coordinate system: (Az,El) or (@, y) or
(6.,¢,). The antenna is located at the origin of the coordinate system; the earth's surface

lies in the x-y plane. Azimuth is generally measured clockwise from a reference (like a
compass) but the spherical system azimuth angle ¢ is measured counterclockwise from
the x axis. Therefore @ =360 — ¢ and y =90 — @ degrees.

ZENITH
|
CONSTANT
ELEVATION
Y

HORIZON
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Radar and ECM Frequency Bands
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Standard Radar Bands!

Band Frequency
Designation® Range (MHz)
HF 3-30
VHF* 30-300
UHF* 300-1,000
L 1,000-2,000
S 2,000-4,000
C 4,000-8,000
X 8,000-12,000
K, 12,000-18,000
K 18,000-27,000
K 27,000-40,000

iliimeter® 40,000-300,000

ECM Bands?

Band Frequency
Designation Range (MHz)
Alpha 0-250
Bravo 250-500
Charlie 500-1,000
Delta 1,000-2,000
Echo 2,000-3,000
Foxtrot 3,000-4,000
Golf 4,000-6,000
Hotel 6,000-8,000
India 8,000-10,000
Juliett 10,000-20,000
Kilo 20,000-40,000
Lima 40,000-60,000
Mike 60,000-100,000

| From IEEE Standard 521-1976, November 30 1976.

2 From AFR 55-44 (AR105-96, OPNAVINST 3420.9B, MCO 3430.1), October 27, 1964.

3 British usage in the past has corresponded generally but not exactly to the letter-designated bands.

4 The following approximate lower frequency ranges are sometimes given letter designations: P-band
(225-390 MHz), G-band (150-225 MHz), and [-band (100-150 MHz).

5 The following approximate higher frequency ranges are sometimes given letter designations: Q-band
(36-46 GHz), V-band (46-56 GHz), and W-band (56-100 GHz).
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Electromagnetic Spectrum

WAVELENGTH 6 4 2 0 -2 10

o AT A
(METERS) 10 10 10 10 10 0 10 10 10
1 1 1 1 1 | | 1
E4 :. $
TELEPHONE RADIO 3 MICRO- § INFRA- Jl ULTRA- 3 B
z VOICE E WAVES $ WAVE 3 RED wouai; X-RAY 3 GAMMA-RAY ;

1' r ‘D

1 | ] ] 1 | 1 1 1

FREQUENCY 1 3 5 7 9 1 1 9 21 23 25
(HERTZ) 10 10 10 10 10 10 |l10 10 10 10
- J i \ - %
_ -7 VISIBLE I\ T~ ~
o L]GH] Vg
12 ~=" 43 \ \ 45 16~ < o!7
FREQUENCY e e™ 10 10 I\ 10 10 e,
(HERTZ) =
\\\.\\\\\\\\\\\
/// INFRARED \\ULTRAVIOLET\
)111:;111111 \\\\x\\\\\\\\\
WAVELENGTH
(METERS) 1 0 10
ORANGE
WAVELENGTH 07x10°° 06x10°° 05x10°° 0.4x10°°
(METERS) (0.7 um) (0.6 um) (0.5 um) (0.4 um)
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Dimensions, Units and Notation

 International System of Units (SI, also referred to as MKS, Table 1-1 in Ulaby)

Dimension Unit Symbol
Length meter m
Mass kilogram kg
Time second S
Electric current ampere A
Amount of substance  mole mol
Temperature kelvin K

e Multiple and submultiple prefixes (see Table 1-2 in Ulaby)

Prefix Symbol Magnitude
exa E 1018

peta P 1013

tera T 1012

giga G 102

mega M 108

kilo k 103

Prefix Symbol Magnitude
milli m 10 -3
micro P 10 )

nano n 10 -9

pico p 10712
femto f 10 -15

atto a 10 -18
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Decibel Unit

Naval Postgraduate School

In general, a dimensionless quantity O in decibels (denoted Q) 1s defined by
Ogs = 10log;(0)

Q usually represents a ratio of powers, where the denominator 1s the reference, and logy 1s
simply written as log. Characters are added to the "dB" to denote the reference quantity, for
example, dBm is decibels relative to a milliwatt. Therefore, if P is in watts

Pipw =10log(P/1) or Py, =10log(P/0.001)

Antenna gain G (dimensionless) referenced to an 1sotropic source (an isotropic source
radiates uniformly in all directions, and its gainis 1):  Gyg =10log(G)

Note that: 1. Positive dB values > 1; negative dB values < 1
2. 10 dB represents an order of magnitude change in the quantity QO
3. When quantities are multiplied their dB values add. For example, the effective

radiated power (ERP") can be computed directly from the dB quantities:
ERP 45, =(PG)apy = Papw T Gap

1
Note: The ERP is also referred to as the effective isotropic radiated power, EIRP.
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Sample Decibel Calculations

1. A transmitter puts out 35 W. What is the output power in decibels?
answer: 10log(35) =(10)(1.544) =15.44 dB (generally dB implies dBW), or since 35 W is

35000 mW, 101og(35000) = (10)(4.544) =45.44 dBm (or simply add 30 dB to the dBW
value)

2. A receiver has a sensitivity of —120 dBm. (a) How many dBW is this? (b) How many
watts?
answer: (a) —120dBm -30dB =-150dBW

(b) 1071°010 = 10715 W = 1 fW (femtowatt)

3. The light intensity at the input of a 10 m optical fiber is 2 W. The fiber loss is 0.2 dB/m.
(a) what is the input power in dBm, (b) what is the output power in dBm, (¢) what is the

output power in watts?
answer: (a) 10log(2/0.001) =(10)(3.3) =33 dBm

(b) (10m)(0.2dB/m) =2 dB of total loss. Loss implies a negative dB quantity,
therefore, the output power is 33 dBm — 2 dB =29 dBm

(©) 10219 =10%° mW =7943mW =0.794 W
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	EC3630  Radiowave Propagation
	(version 1.1)

	Frequently k is used in place of � when the medium is lossless and unbounded.  There is a similar wave equation that can be derived for the magnetic field intensity
	Time snapshots of the field are shown below
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	Poynting’s theorem is a statement of conservation
	The quantity � (W/�) is known as the Poynting vector.  The instantaneous value of the Poynting vector is
	�
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	Assumptions are that all dipoles are identical, independent, and all relaxation times are the same.  In fact, dipoles are spatially and temporally coupled, relaxation times vary, and other types of polarization exist.  The Debye model is never seen in re
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	Most materials are non-magnetic (�) and therefore magnetic losses can be neglected.  For all other materials, either ohmic loss or dielectric loss dominates.  For an imperfect conductor, an equivalent complex dielectric constant can be derived by intro
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	Note that the power spreads as � \(the “inverse�
	the wave propagates radially outward
	it is TEM (there are only � and � field components)
	the field components vary as
	The incident fields (�) are known in each case.  We can write expressions for the reflected and transmitted fields (�) and (�), and then apply the boundary conditions at �:
	and
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	Below the ocean surface the electric field is given by �, where the transmission coefficient is determined from the Fresnel formulas
	The instantaneous (time-dependent) expression for the field is
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	Twin lead or two-wire
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	A solution for the voltage is
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	Power on a lossless line is computed from the voltage and current
	The incident instantaneous power in the incident wave is
	�
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	Similarly for the reflected power
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	If a quarter-wavelength section is inserted between the transmission line and load, the input impedance is
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	If the incident wave is TEM, then the field at the output can be expressed as � and the transmission coefficient of the section is
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	Example:  If the following field exists in a rectangular waveguide what mode is propagating?
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	Example:  What is the lowest frequency that will readily propagate through a tunnel with a rectangular cross section of dimension 10m by 5m?
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	Direction cosines are the projections of points on the unit sphere onto the xy plane.  They are the x,y, and z components of �:
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